4,590 research outputs found

    A preliminary evaluation of text-based and dependency-based techniques for determining the origins of bugs

    Get PDF
    A crucial step in understanding the life cycle of software bugs is identifying their origin. Unfortunately this information is not usually recorded and recovering it at a later date is challenging. Recently two approaches have been developed that attempt to solve this problem: the text approach and the dependency approach. However only limited evaluation has been carried out on their effectiveness so far, partially due to the lack of data sets linking bugs to their introduction. Producing such data sets is both time-consuming and challenging due to the subjective nature of the problem. To improve this, the origins of 166 bugs in two open-source projects were manually identified. These were then compared to a simulation of the approaches. The results show that both approaches were partially successful across a variety of different types of bugs. They achieved a precision of 29%{79% and a recall of 40%{70%, and could perform better when combined. However there remain a number of challenges to overcome in future development|large commits, unrelated changes and large numbers of versions between the origin and the x all reduce their effectiveness

    The Effect of Fluctuations on the Helium-Ionizing Background

    Full text link
    Interpretation of He II Ly{\alpha} absorption spectra after the epoch of He II reionization requires knowledge of the He II ionizing background. While past work has modelled the evolution of the average background, the standard cosmological radiative transfer technique assumes a uniform radiation field despite the discrete nature of the (rare) bright quasars that dominate the background. We implement a cosmological radiative transfer model that includes the most recent constraints on the ionizing spectra and luminosity function of quasars and the distribution of IGM absorbers. We also estimate, for the first time, the effects of fluctuations on the evolving continuum opacity in two ways: by incorporating the complete distribution of ionizing background amplitudes into the standard approach, and by explicitly treating the quasars as discrete -- but isolated -- sources. Our model results in a He II ionization rate that evolves steeply with redshift, increasing by a factor ~2 from z=3.0 to z=2.5. This causes rapid evolution in the mean He II Ly{\alpha} optical depth -- as recently observed -- without appealing to the reionization of He II. The observed behaviour could instead result from rapid evolution in the mean free path of ionizing photons as the helium in higher H I column density absorbers becomes fully ionized.Comment: 14 pages, 9 figures. Accepted by MNRAS; significantly modified from previous versio

    Studying the lives of software bugs

    Get PDF
    For as long as people have made software, they have made mistakes in that software. Software bugs are widespread, and the maintenance required to fix them has a major impact on the cost of software and how developers' time is spent. Reducing this maintenance time would lower the cost of software and allow for developers to spend more time on new features, improving the software for end-users. Bugs are hugely diverse and have a complex life cycle. This makes them difficult to study, and research is often carried out on synthetic bugs or toy programs. However, a better understanding of the bug life cycle would greatly aid in developing tools to reduce the time spent on maintenance. This thesis will study the life cycle of bugs, and develop such an understanding. Overall, this thesis examines over 3000 real bugs, from real projects, concentrating on three of the most important points in the life cycle: origin, reporting and fix. Firstly, two existing techniques are compared for discovering the origin of a bug. A number of improvements are evaluated, and the most effective approach is found to be combining the techniques. Furthermore, the behaviour of developers is found to have a major impact on the accuracy of the techniques. Secondly, a large number of bugs are analysed to determine what information is provided when users report bugs. For most bugs, much important information is missing, or inaccurate. Most importantly, there appears to be a considerable gap between what users provide and what developers actually want. Finally, an evaluation is carried out on a number of novel alterations to techniques used to determine the location of bug fixes. Compared to existing techniques, these alterations successfully increase the number of bugs which can be usefully localised, aiding developers in removing the bugs.For as long as people have made software, they have made mistakes in that software. Software bugs are widespread, and the maintenance required to fix them has a major impact on the cost of software and how developers' time is spent. Reducing this maintenance time would lower the cost of software and allow for developers to spend more time on new features, improving the software for end-users. Bugs are hugely diverse and have a complex life cycle. This makes them difficult to study, and research is often carried out on synthetic bugs or toy programs. However, a better understanding of the bug life cycle would greatly aid in developing tools to reduce the time spent on maintenance. This thesis will study the life cycle of bugs, and develop such an understanding. Overall, this thesis examines over 3000 real bugs, from real projects, concentrating on three of the most important points in the life cycle: origin, reporting and fix. Firstly, two existing techniques are compared for discovering the origin of a bug. A number of improvements are evaluated, and the most effective approach is found to be combining the techniques. Furthermore, the behaviour of developers is found to have a major impact on the accuracy of the techniques. Secondly, a large number of bugs are analysed to determine what information is provided when users report bugs. For most bugs, much important information is missing, or inaccurate. Most importantly, there appears to be a considerable gap between what users provide and what developers actually want. Finally, an evaluation is carried out on a number of novel alterations to techniques used to determine the location of bug fixes. Compared to existing techniques, these alterations successfully increase the number of bugs which can be usefully localised, aiding developers in removing the bugs

    Determining the Nature of Late Gunn-Peterson Troughs with Galaxy Surveys

    Full text link
    Recent observations have discovered long (up to ~110 Mpc/h), opaque Gunn-Peterson troughs in the z ~ 5.5 Lyman-alpha forest, which are challenging to explain with conventional models of the post-reionization intergalactic medium. Here we demonstrate that observations of the galaxy populations in the vicinity of the deepest troughs can distinguish two competing models for these features: deep voids where the ionizing background is weak due to fluctuations in the mean free path of ionizing photons would show a deficit of galaxies, while residual temperature variations from extended, inhomogeneous reionization would show an overdensity of galaxies. We use large (~550 Mpc/h) semi-numerical simulations of these competing explanations to predict the galaxy populations in the largest of the known troughs at z ~ 5.7. We quantify the strong correlation of Lyman-alpha effective optical depth and galaxy surface density in both models and estimate the degree to which realistic surveys can measure such a correlation. While a spectroscopic galaxy survey is ideal, we also show that a relatively inexpensive narrowband survey of Lyman-alpha-emitting galaxies is ~90% likely to distinguish between the competing models.Comment: 12 pages, 16 figures. Submitted to Ap

    Large Fluctuations in the High-Redshift Metagalactic Ionizing Background

    Full text link
    Recent observations have shown that the scatter in opacities among coeval segments of the Lyman-alpha forest increases rapidly at z > 5. In this paper, we assess whether the large scatter can be explained by fluctuations in the ionizing background in the post-reionization intergalactic medium. We find that matching the observed scatter at z ~ 5.5 requires a short spatially averaged mean free path of 3 shorter than direct measurements at z ~ 5.2. We argue that such rapid evolution in the mean free path is difficult to reconcile with our measurements of the global H I photoionization rate, which stay approximately constant over the interval z ~ 4.8 - 5.5. However, we also show that measurements of the mean free path at z > 5 are likely biased towards higher values by the quasar proximity effect. This bias can reconcile the short values of the mean free path that are required to explain the large scatter in opacities. We discuss the implications of this scenario for cosmological reionization. Finally, we investigate whether other statistics applied to the z > 5 Lyman-alpha forest can shed light on the origin of the scatter. Compared to a model with a uniform ionizing background, models that successfully account for the scatter lead to enhanced power in the line-of-sight flux power spectrum on scales k < 0.1 h/Mpc. We find tentative evidence for this enhancement in observations of the high-redshift Lyman-alpha forest.Comment: Matches version published by MNRAS with clarifications and expanded discussio

    Results on improved KS dynamical configurations: spectrum, decay constants, etc

    Full text link
    The MILC Collaboration has been producing ensembles of lattice configurations with three dynamical flavors for the past few years. There are now results for three lattice spacings for a variety of light and strange quark masses, ranging down to ml=0.1msm_l=0.1 m_s, where msm_s is the dynamical strange quark mass and mlm_l is the common mass of the uu and dd quarks. Recently, the Fermilab, HPQCD, MILC and UKQCD collaborations have presented a summary of results obtained using these lattices. Compared with quenched results, these new calculations show great improvement in agreement with experiment. This talk addresses the technical improvements that make these calculations possible and provides additional details of calculations not presented in the initial summary. We demonstrate that a wide range of hadronic observables can now be calculated to 2--3% accuracy.Comment: 10 pages, 17 figures (16 in color), Lattice2003(plenary), Plenary talk presented at Lattice 2003, Tsukuba, Japan, July 15-19. Also presented at Lattice Hadron Physics workshop, Cairns, Australia, July 22-30, 200

    Consumer Co-operatives and Retail Internationalisation: problems and prospects

    Get PDF
    Purpose – Explores the retail internationalisation activities of consumer co-operatives. Findings – A survey of the available information on these internationalisation activities shows that they have been restricted to a relatively small number of co-operatives and that the ‘failure’ rate has been very high. Some suggestions are made as to why the co-operatives have been unable to convert their early-mover advantages into sustainable retail networks. Research limitations – The restricted nature of the sample means that these exploratory findings are primarily descriptive. Further, in-depth work with a sample of these co-operatives would help us to better understand the reasons for the moves into and out of various international activities. Practical Implications – Expands the literature on retail failure in general and also provides some more depth to the literature on the internationalisation of co-operatives. Originality/ Value – Whilst there have been significant volumes of research into the internationalisation of investor-owned retailers and of producer co-operatives, particularly the ‘new generation’ co-operatives, there has been very little prior work undertaken in this area

    Concentrating on Carbon Concentration in Algae

    Get PDF
    Carbon Concentrating Mechanisms Improve Photosynthesis Rates in Low-Carbon Environments. CCMs allow the aggregation of carbon near the site of rubisco, that way even small amounts of available carbon are being utilized. Yes, this is important to you! Albeit somewhat indirectly, but massively nonetheless! Algae are a driving force behind the global carbon cycle, they sequester CO2 in the oceans. Understanding the mechanisms behind the tiny marine alga O. tauri gives us a better understanding of a vital global process
    corecore